Матрица с обратной засветкой. Считывание потенциального рельефа с матрицы пзс Классификация по способу буферизации

Как выбрать видеокамеру? На какие характеристики обращать внимание при покупке, а какие игнорировать? И что скрывается за рекламируемыми параметрами видеокамер?
Почему одни видеокамеры стоят 500 у.е., а другие 5000, если они делают одно и то же – записывают изображение на кассету в формате PAL. В чём разница?

Эта статья – не перечисление скучных терминов, в которых просто запутаться, а практические советы по выбору.

Видеокамера. Аналоговая, цифровая или HDV?

Аналоговые видеокамеры сегодня уже не выпускаются. Сегодня все камеры цифровые (независимо от того – пишут ли они на кассету или на диск). Разница только в стандартах.

Стандартные цифровые камеры снимают в стандарте PAL – том самом, в котором сегодня ведётся телевизионное вещание. Но в наши дни происходит постепенный переход на новый стандарт – телевидение высокой чёткости (или HDV), на него перейдёт и телевидение, и бытовые магнитофоны.
Наверняка, снятое вы захотите посмотреть через несколько лет (особенно если это рождение ребёнка, выпускной или свадьба). И делать вы это будете уже на новом магнитофоне. Смотреть это на обычном DVD всё равно, что сегодня смотреть фильм снятый на VHS-кассету.

Видеокамеры стандарта HDV сегодня хотя и стоят значительно дороже, чем обычные (стандарта PAL), но если есть деньги – лучше взять именно HDV.

Вывод: покупаем видеокамеру стандарта HDV.

HD или HDD?

Это совершенно разные понятия, которые часто путают. HD – означает, что камера работает в режиме высокой чёткости (новый стандарт i1080). HDD – в камере используется жёсткий диск (Hard Disk Drive) в качестве носителя.

Носитель (на что записывает камера)

На что пишет камера – на жёсткий диск, на сменный диск или на кассету – не влияет на качество изображения (поверьте, производители хорошо подумали, прежде выпустить данную модель).
Единственная разница – в удобстве пользования.
Например, я снимаю помногу, и потом монтирую фильмы на компьютере. Поэтому мне удобны кассеты: они не бьются, не ломаются, их можно «мять», ронять – плёнка находится в жёстком корпусе. И даже если на плёнке будет царапина (замятие) – будет бракованной одна секунда записи.

Тем, кто не монтирует фильмы, а просто снимает большими кусками, а потом полностью смотрит отснятое – удобнее пользоваться сменными дисками. Они хороши тем, что сразу после съёмки их можно вставить в DVD-магнитофон и смотреть как обычный диск.
Естественные минусы – хрупкость носителя, и боязнь царапин. Если вы нанесёте хотя бы маленькую царапинку – у вас будет испорчен значительный кусок фильма (несколько минут), а царапина через всю поверхность диска и вовсе сделает невозможным его прочтение.

Наконец, жесткий диск. Он удобен для тех, кто не снимает слишком много. Обычно ёмкости жёсткого диска хватает на целый день записи (в разумных пределах). Его нельзя поцарапать – т.е. снятые данные будут защищены.
Однако, большим минусом является то, что снятое каждый раз нужно переписывать на компьютер, что бы освободить место для новых записей. Это не проблема, если после съёмки вы имеете доступ к своему компьютеру. Но, например, в отпуске, вы будете ограничены ёмкостью диска.

Тогда как кассеты или сменные диски можно купить где угодно, и можно привезти с собой целую коробку, положить на полку «до лучших времён».

Вывод: покупайте то, чем вам будет удобнее пользоваться.

HDV или AVCHD?

Оба формата записывают видео в формате высокой чёткости. Различаются они только алгоритмом сжатия, у AVCHD (кодека - AVC/H.264) – он более качественный и быстродейственный, что позволяет в режиме реального времени записывать картинку более высокого качества, т.е. с меньшими потерями от сжатия.
В результате появляется возможность записывать изображение действительно в разрешении 1920х1080, а не как многие камеры – записывают 1440х1080, а затем при воспроизведении растягивают его до 1920х1080.
Сегодня сжатие AVCHD применяется в основном для записи на Flash-карты (такие камеры активно продвигает «Panasonic»); запись на flash-карту позволяет легко и быстро найти любой фрагмент записи, и просматривать flash-карту на компьютере.
Однако, стоит учесть, что возможность более качественной записи не означает её реализацию – многое зависит от матрицы, оптики, и «маркетинговой политики»: некоторые фирмы стремясь указать как можно большее время записи на носитель (вспомните слоганы типа «80 часов записи на встроенный диск») жертвуют качеством записи, а в этом случае AVCHD не даёт никакого преимущества перед обычным HDV, поэтому однозначно сказать, что AVCHD камера лучше, чем HDV – нельзя.

К временным недостаткам можно отнести требовательность к аппаратным ресурсам (необходимы для распаковки записи при воспроизведении). Соответственно, и видео-редактор у вас должен быть не старой версии (например, Premiere CS 4, а не CS 3). Впрочем, если у вас «современный» компьютер – это не проблема.

Таким образом, формат записи AVCHD является, безусловно, перспективным. А запись на носитель без вращающихся элементов (без кассеты или диска) снижает энергопотребление и увеличивает надёжность.

Вывод: при покупке интересуемся, в каком реальном формате производится запись (1920х1080 или 1440х1080), и если это 1920х1440 – выбираем AVCHD. В противном случае это не даст никаких преимуществ по качеству.

Баланс белого

Может быть ручной и автоматический.

Зачем вообще нужен баланс белого? Дело в том, что при различной освещённости меняется «цветовая температура» - т.е. цветовой оттенок объектов. Например, в домашних условиях при использовании ламп накаливания преобладают жёлтые тона, при использовании люминесцентных ламп – синевато-фиолетовые, при съёмках в сумерках – синевато-серые, на солнце – жёлтые. Наш глаз адаптируется к этим условиям, и мы не видим разницы, а вот видеокамера должна каждый раз определять, какой цвет считать белым.
И именно от этого «эталона» определяются остальные цвета.

На улице ярким днём видеокамера чаще всего правильно автоматически определяет белый цвет. Но часто встречаются ситуации, когда она не в состоянии сделать это самостоятельно. В результате изображение получается с жёлтым или синим оттенком.
Поэтому необходима возможность устанавливать баланс белого вручную.

Вспомните, с чего начинают работу профессиональные видео-операторы – с того, что ставят перед камерой белый лист и производят какие-то манипуляции. Так должны поступать и Вы перед началом съёмки в помещении.
Нередки ситуации, когда снимая в помещении на «автоматическом балансе белого», кто-то случайно пройдёт близко перед камерой, резко изменится освёщённость и камера «перестроит» баланс белого; при чём сделает это, скорее всего, неправильно. В результате съёмку приходится прекращать и настраивать баланс заново.
Поэтому в камере должна быть возможность не только ручного определения баланса белого, но и возможность отключения автоматического баланса.

Вывод: покупаем камеру только с возможностью ручной настройкой баланса белого, и возможностью отключения автоматического определения баланса белого.

Оптика

Качество оптики (оптической системы) трудно оценить по формальным признакам. И здесь не поможет даже наличие известных марок (Carl Zeiss и другие).
Оценить качество изображения можно только после пробной съёмки.

Но есть один параметр, о котором почти всегда забывают, который можно оценить – это максимальный угол обзор (минимальное фокусное расстояние)!

Угол обзора (фокусное расстояние видеокамеры)

Очень важный параметр, который практически никогда не указывается в рекламе.

Производители указывают только увеличение (Zoom). Но Zoom – это разница между минимальным и максимальным фокусным расстоянием. А от фокусного расстояния зависит угол обзора, т.е. то, что может войти в кадр.
Вспомните, сколько раз для того, что бы снять человека в полный рост вам приходилось отходить «подальше», потому что человек не влезал полностью в кадр? А если бы минимальное фокусное расстояние было меньше (т.е. угол обзора больше), то и отходить пришлось бы на меньшее расстояние (например, на 5 метров вместо 10).
А когда вам захочется снять большое здание, или красивый пейзаж, то «отойти подальше» для того, что бы всё попало в кадр, придётся на большее расстояние (например, не на 100 метров, а на 200). А это не всегда возможно.

Проделайте простой опыт: сложите пальцы колечком (в знак «ОК») и приближая и удаляя колечко от глаза смотрите через него: чем колечко ближе к глазу – тем больше в него видно. Аналогично и с фокусным расстоянием: чем оно меньше, тем больше входит в кадр.

В случае с объективами, при сильном уменьшении фокусного расстояния начинают сказываться оптические искажения, поэтому требуется более сложная, а значит, более дорогая конструкция. И конструкторы, что бы не увеличивать стоимость объектива (а значит и всей камеры) ограничивают минимальное фокусное расстояние. Поэтому у дешёвых камер, в кадр обычно попадает не так много, как дорогих.

Соотношения угла обзора от фокусного расстояния зависят от размера изображения на матрице, поэтому для видеокамер невозможно привести конкретную таблицу зависимости угла обзора от фокусного расстояния.
Для фотоаппаратов с размером кадра 24х36 мм (при расстоянии 16 мм – угол обзора равен 115 градусам, 18 мм – 100 град, 21 мм – 90 град, 35 мм – 64 град, 75 мм – 32 град). Как видите, при изменении минимального фокусного расстояния всего на несколько миллиметров угол обзора меняется очень значительно.
При равном фокусном расстоянии, чем матрица больше – тем больше угол обзора.

Соотношения угла обзора от фокусного расстояния зависят от размера изображения на матрице (именно изображения на матрице, а не размера самой матрицы), поэтому для видеокамер невозможно привести универсальную таблицу зависимости угла обзора от фокусного расстояния. При равном фокусном расстоянии, чем размер изображения на матрице больше – тем больше угол обзора.
Для «стандартизации» используют значение фокусного расстояния «в плёночном эквиваленте» - т.е. как у плёночных фотоаппаратов. Зависимость приведена в таблице:

Как узнать «эквивалентное фокусное расстояние»?
Я предлагаю простую формулу: <фокусное расстояние (мм)> * 1,77 / <размер матрицы (дюйм)>
Например, фокусное расстояние – 5,5 мм, размер матрицы – 1/3,1 дюйма, тогда эквивалентное плёночному фокусное расстояние равно: 5,5 * 1,77 / (1/3,1) = 9,735 / 0,323 = 30,2 мм.
Хотя, честно говоря, для большинства видеокамер такая формула не подходит, т.к. обычно матрицу делают гораздо больше, чем нужно для съёмки видео.

Как видите, при изменении минимального фокусного расстояния всего на несколько миллиметров угол обзора меняется очень значительно.

(Обратите внимание на то, что нас интересует фокусное расстояние не для фотокамеры, функции которой может выполнять видеокамера, и именно для видеокамеры. Значение такого параметра Вам вряд ли кто-то назовёт, поэтому легче выбирать камеру по углу обзора).

- Как определить угол обзора в магазине?

Обычно в больших магазинах видеокамеры стоят закреплёнными на стойке.
Установите на камере минимальное увеличение (что бы в кадр попадало как можно больше).
Попросите вашего приятеля встать перед камерой и вытянуть руки точно в стороны.
А теперь попросите его подойти или отойти от камеры так, что вы его вытянутые руки помещались точно в границах кадра. И заметьте расстояние от камеры – так камера у которой это расстояние будет минимальным имеет самый большой угол обзора.

Аналогичный эксперимент можно провести, например, с альбомным листом – приближая или удаляя его от камеры, и отмечая расстояние от листа до камеры.

- Можно ли изменить минимальное фокусное расстояние с помощью специальных насадок на объектив?

Можно. Но это будет уже дополнительная насадка, изменяющая вид камеры, на которую чаще всего не налезает бленда. Зачем вам такие трудности, когда можно сразу купить камеру с нужным фокусным расстоянием?

Вывод: при выборе видеокамеры обязательно интересуйтесь максимальным углом обзора!
(Требуйте у продавца сообщить вам его, и хотя далеко не каждый сможет указать его точно – настаивайте на своём).

Увеличение (Zoom)

Увеличение может быть оптическим и цифровым.
При оптическом увеличении изменяется изображение проецируемое непосредственно на матрицу, а при цифровом – проецируемое изображение остаётся без изменений, а увеличение происходит программными методами.

Подробнее:
При оптическом увеличении меняется фокусное расстояние – т.е. линзы удаляются или приближаются к объективу.
Вспомните детские опыты с линзой, когда её удаляешь или приближаешь к объекту – то видишь его то более увеличенным, то менее. Аналогично работает и объектив с переменным фокусным расстоянием (только линз там больше и механизм их перемещения более сложный).

При цифровом увеличении само изображение на матрице остаётся прежним, но из него выбирается часть, и «растягивается» на весь экран.
Попробуйте, например, на компьютере открыть jpeg-файл программой просмотра, и установите масштаб изображения 200%, 400%, 1000%. Что вы видите? Вместо чёткой картинки - отдельные крупные точки. Изображение при этом стало крупнее, вот только разглядеть детали всё равно невозможно, т.к. чёткость стала значительно хуже.
Аналогичный результат вы получите и при цифровом увеличении. Вроде бы изображение увеличилось, но на самом деле мелкие детали разглядеть не удастся.
Поэтому в установках видеокамер существует возможность ограничить увеличение только оптическим.

К тому же «цифровое увеличение» можно сделать уже в при монтаже – с помощью программы видеомонтажа.
Справедливости ради, отмечу, что цифровое увеличение сделанное камерой при съёмке будет более качественным чем увеличение добавленное при монтаже, но в большинстве случаев на глаз это не заметно.

Вывод: обращаем внимание только на оптическое увеличение, и не обращаем на цифровое.
Камера с параметрами „zoom 25/100” предпочтительнее, чем „zoom 15/1000” – т.к. в первом случае оптическое увеличение в 25 раз, а во втором – всего 15.

ПЗС-матрица. Разрешение

ПЗС-матрица – это та самая деталь, в которой световой поток превращается в электрические сигналы, которые затем преобразуются процессором в специальный формат и записываются на плёнку.
Производители в рекламе гордо пишут о мегапиксельных, 2-мегапиксельных матрицах. Для видеосъёмки такие параметры абсолютно бесполезны!

Разрешение стандарта PAL – 720х576 точек, или 415 тысяч пикселей. Поэтому максимальное разрешение, которое может быть использовано видеокамерой - 0,415 мегапикселей (для NTSC – 0,350).

Это всё равно, что выбирать между пассажирскими автобусами с максимальной скоростью 150 км/ч, 250 км/ч или 350 км/ч. Всё равно максимальная скорость, на которой осуществляется перевозка пассажиров – 100 км/ч, поэтому «запас по скорости» в 50, 150, или 250 км/ч так и останется «запасом», который никогда не будет востребован.

Зачем же нужны дополнительные пиксели?

Они нужны для цифрового стабилизатора изображения (см. Цифровой стабилизатор изображения).

Однако, сегодня начинают продаваться видеокамеры записывающие изображения для стандарта будущего – Телевидения высокой чёткости (см. Перспективы развития), для них нужно бОльшее разрешение.

Вывод: при выборе камеры не обращаем внимания на количество пискелей.

Количество ПЗС-матриц

Может быть одна или три.

Одной из важных характеристик матрицы (которую трудно оценить по формальным параметрам) является её цветопередача – т.е. то, на сколько точно передаётся каждый цвет. В существующих сегодня телевизионных стандартах изображение разбивается на 3 составляющие: красную, зелёную и синюю (RGB), поэтому на каждой матрице на один «заявленный в характеристиках» пиксел приходится 3 фотоэлемента, регистрирующих соответственно красную, зелёную и синюю составляющие. При этом неизбежна потеря качества как цветопередачи, так и чёткости изображения.

Поэтому в современных камерах для улучшения цветопередачи используют для каждого цвета отдельную матрицу, каждая из которых улавливает только свой цвет. Световой поток разделяют на 3, и каждый направляется на свою матрицу.
Качество цветопередачи и чёткость изображения получаются значительно лучше.

Вывод: берём камеру с 3 (тремя) ПЗС-матрицами.

Шумность матрицы

Каждая матрица имеет шумы – посторонние артефакты, возникающие на изображении.
При съёмке в яркий солнечный день они не видны, а вот если вы снимаете в условиях недостаточной видимости – шумы могут быть очень заметными.
Оценить их уровень можно только сделав пробную съёмку, что в магазинах практически невозможно.
Поэтому лучше заранее почитать результаты тестов видеокамер в Интернете.

Тип развёртки

Развёртка бывает прогрессивная и чересстрочная.

На экране телевизора (существующие телевизионные стандарты разрабатывались под электронно-лучевые трубки, где изображение формируется электронным лучом, пробегающим по экрану построчно) изображение формируется из 2 частей: сначала обновляются нечётные строки, затем – чётные. Таким образом, при частоте обновления изображения 25 кадров в секунду на самом деле оно меняется 50 раз в секунду, но каждый раз меняется только половина кадра.

Поэтому и видеокамеры записывали не 25 полных кадров в секунду, а 50 «половинных» кадров, каждый из которых состоял только из чётных или нечётных строк. Такая запись называется чересстрочной.

Однако, при просмотре отснятого материала на экране компьютерных мониторов, обладающих высокой чёткостью, из-за чересстрочной записи стали видны неприятные артефакты. Так при перемещении по экрану объекта вместо чётких границ видна «гребёнка».
Ещё больше видна она при печати фотографий с фильма.

Поэтому был придуман режим съёмки, при котором каждый кадр записывался полностью (на одном кадре записывались как чётные, так и нечётные строки), как в кино. Такой режим называется «прогрессивным».

Его минусы в том, что при этом теряется «плавность» перемещения – т.к. как обновление с частотой 25 кадров в секунду – это всё-таки визуально меньше, чем 50 полукадров в секунду.
Эта разница, кстати, хорошо видна при сравнении кино- и телефильмов.

Нужна ли прогрессивная развёртка? Для бытовых камер – нет.
А как же устранить «гребёнку»? Любая программа видеомонтажа имеет функцию «сглаживания», которая полностью её нейтрализует, и на экране монитора становятся видны плавные границы (именно не чёткие, а плавно размытые).

Вывод: для просмотра отснятых фильмов на обычном телевизоре прогрессивная развёртка не нужна, достаточно чересстрочной.
Но для просмотра фильмов на экране монитора или цифрового телевизора прогрессивная развёртка будет полезной.

Стабилизатор изображения

Стабилизаторы бывают двух видов: электронный и оптический

Очень важный элемент, который трудно оценить по формальным параметрам. Только пробная съёмка даст Вам представление о его качестве.

Стабилизатор нужен для того, что бы изображение на экране не дрожало. Ведь как бы «ровно» вы не держали камеру, вы всё равно не сможете удержать её в одном положении (если только Вы не профессиональный снайпер).
Особенно дрожание сказывается при съёмке с увеличением. Вспомните стрельбу в тире: на сколько сложно постановить ружьё в нужное положение и удерживать его так.

Для облегчения жизни оператора и служит стабилизатор. Он компенсирует дрожания.

Оптический стабилизатор – самый качественный. Конструктивно он состоит из гироскопических сенсоров, улавливающих направление и скорость колебания камеры; а также подвижных линз. Он улавливает широкий диапазон вибраций, компенсирует малейшие дрожания. В результате, несмотря на дрожание камеры, система линз вместе с матрицей всегда находятся в одном и том же положении относительно снимаемого объекта.
Минус у такой конструкции только один – относительно высокая стоимость.

Однако, стоит заметить, что на самом деле оптические стабилизаторы конструируются в расчёте не некую «центральную точку», которая остаётся (вернее, должна оставаться) практически неподвижной при дрожании камеры. Такой стабилизатор правильно работает только когда камера надета на руку (подавляющее большинство времени вы будете снимать именно так), а вот когда камеру снимают с руки и держат, например, за объектив и заднюю часть (например, при съёмке низко расположенных объектов), оптический стабилизатор может дать сбой.

Электронный стабилизатор работает по другому принципу: ПЗС-матрица в камере больше, чем нужно для съёмки. Камера сама выбирает «центр кадра», и область вокруг него; и когда это центр смещается – пытается «вернуть» его на место. Т.е. записывает изображение, которое проецируется не на центральную часть матрицы, а смещённое относительно центра.

Исходя из этого принципа действия, первым недостатком электронного стабилизатора является «залипание» изображения при попытке повернуть камеру. Т.е. камера считает, что вы не специально поворачиваете камеру, а что это тряска, и «компенсирует» это. В результате когда после съёмки неподвижного изображения вы начинаете поворот, для снятия панорамы, первое время изображение остаётся неподвижным, а затем происходит резкий «скачок» в сторону.

Кстати, при плавном повороте камеры, электронные стабилизаторы отключаются, что бы дать возможность снимать «плавно перемещающееся» изображение. Поэтому при съёмке панорам изображение чаще всего остаётся «нестабилизированным».

Но главным минусом электронного стабилизатора является ограничение на минимальную освещённость, при которой он работает. Поэтому часто в помещении, которое не залито ярким светом, электронный стабилизатор может просто не срабатывать.

Видоискатель

Видоискатель бывает цветным или чёрно-белым.

Практически все современные бытовые видеокамеры оснащаются цветным видоискателем. Это профессионалы выбирают чёрно-белый, так как только он позволяет быстро и правильно оценить разницу освещённости различных объектов. Впрочем, оставим игру светотени для них.
Лучше обратим внимание на ЖК-экран.

Жидко-кристаллический экран

Сегодня он есть практически во всех видеокамерах. Он позволяет увидеть снимаемое не только через видоискатель, прижимая видеокамеру к глазу, а выводит его на большой экран.
Это позволяет вести съёмку не только с уровня глаз, а из практически любых положений (поднять камеру над собой, или опустить на нужный уровень, приблизиться вплотную к снимаемому объекту).
Так же ЖК-экран можно развернуть на 180 градусов и снимать самого себя (добавлю от себя – весьма сомнительное удобство).
Через ЖК-экран можно просматривать отснятый материал самому и показывать его другим.

Лучше, что бы ЖК-экран был побольше – тогда и смотреть удобнее, да и качество картинки (особенно при ручном фокусе) можно тщательно разглядеть.
Сегодня предлагаются камеры с ЖК-экранами 180 000 – 200 000 пикселей. На них можно разглядеть и все детали.

Часто на них можно вывести полезные функции: например, определение «точки наводки на резкость» или «точки наводки на освещённость».
Это нужно для того, что бы при съёмке в сложных условиях (например, тёмный главный объект на ярком фоне) можно было быстро и точно указать камере, какой объект нам важен, и указать его. Тогда камера настроится на него (независимо от того, попадают ли в фокус другие объекты, и как они освещены), и вы снимите то, что хотите.

Естественно, экран, подразумевающий прикасания к нему пальцами, должен иметь защиту от отпечатков.

Функция «Зебра»

Очень полезная функция, которая наглядно показывает «пересвеченные» участки, т.е. такие, которые на экране будут абсолютно белыми.

Зачем это нужно? Наверняка, вы сталкивались с тем, что при съёмке пейзажей стоит взять в кадр чуть меньше неба, как оно на экране превращается из живописного синего (с облаками) в белое, как при пасмурной погоде. Причина в том, что функция автоэкспозиции (которая определяет освещённость снимаемого объекта) считает, что освещённость изменилась (т.к. в объектив попадает меньше света), и настраивается так, что бы земля на экране была хорошо освещена. При этом ярко освещённые объекты и небо получаются белым.
Аналогично, например, бывает при съёмках кого-то на фоне окна, или просто тёмного объекта на фоне яркого.

Через видоискатель бывает трудно оценить истинную освещённость. И в этом помогает функция «Зебра».
«Зебра» - отмечает чёрно-белыми полосками те участки, которые на плёнке будут выглядеть абсолютно белыми. И вы можете исправить свою ошибку: выбрать другой ракурс, или подстроить освещённость вручную.
Встречается несколько режимов «Зебры»: показ на 100% пересвеченных участков и, например, на 70% - т.е. участки пока не белые, но «потенциально опасные».

Вывод: берём видео-камеру с функцией «Зебра».

P.S. Авторские права на данную статью принадлежат Калашникову Николаю.
Если вы увидите на другом сайте статью слово в слово повторяющую написанное здесь, знайте - авторы сайта украли её у меня.
Если вы увидите на другом сайте статью, повторяющую смысл и хронологию моей статьи, но с заменой некоторых слов, знайте - эта стаья была у меня также украдена.

Фотоэлектрические преобразователи изображения на ПЗС делятся на два класса: линейные (одномерные) и матричные (двумерные). В линейных ФЭП фоточувствительные элементы расположены вдоль одной линии, обычно строки, и формируют одномерное изображение объекта. Такие однострочные ФЭП могут быть использованы при контроле за технологическими процессами производства, при специальном анализе и анализе оптической плотности макро- и микрообъектов. Однострочные ФЭП могут быть использованы и для получения двумерного изображения. В этом случае необходимо перемещение ФЭП или объекта в направлении, перпендикулярном направлению строчной развертки.

Твердотельным аналогом передающей трубки с электронным сканированием по строке и кадру является матричный формирователь сигнала изображения. Он представляет собой двухкоординатный массив светочувствительных элементов, в котором осуществляется электронное сканирование по координатам х и y. При проектировании такой двухкоординатной матрицы решается вопрос организации ее считывания.

Для наиболее полного использования достоинств ПЗС зарядовые пакеты должны перемещаться к одному выходному устройству, а порядок считывания информации - обычно соответствовать принятому телевизионному стандарту. При выборе способа организации считывания необходимо обеспечить минимальное смазывание изображения, возникающее при переносе накопленных зарядовых пакетов через освещенные области прибора. Поэтому в современных матричных ФЭП на ПЗС области накопления заряда и его переноса разделяют.

По способу организации считывающие матрицы ПЗС делятся на матрицы с кадровым переносом заряда (КП), матрицы со строчным переносом заряда (СП) и матрицы со строчно-кадровым переносом заряда (СКП).

Матрицы ПЗС КП (см. рис. 8.12) включают в себя секцию накопления - фотоприемную секцию, секцию хранения или памяти, которая защищена от света и равна по площади секции накопления, и один или несколько параллельных выходных сдвиговых регистров.

Рис. 8.12. Способ организации покадрового считывания

Во время активной части поля происходит накопление зарядовых пакетов в фотоприемной секции. Во время кадрового гасящего импульса, накопленные заряды всех строк поля последовательно переносятся в защищенную от света секцию хранения. Далее во время накопления в фотоприемной секции следующего кадра информация из секции хранения построчно передается в секцию переноса заряда - сдвиговый регистр. Сдвиг строк в секцию переноса осуществляется во время обратного хода горизонтальной развертки. Затем зарядовые пакеты строки поэлементно выводятся сдвиговым регистром к выходному устройству, преобразующему заряды в сигнал изображения. После считывания всей видеоинформации из секции хранения начинается перенос следующего кадра.


Одним из основных достоинств покадрового считывания является уменьшение эффекта смазывания изображения, так как зарядовая информация считывается из защищенной от света секции хранения и дополнительной засветки при сканировании не происходит. При покадровой организации легко осуществляется чересстрочное разложение изображения, также проста электродная структура, что позволяет компактно расположить ячейки матрицы. Принцип покадрового переноса удобен для освещения матрицы со стороны подложек, что позволяет удвоить квантовую эффективность прибора и получить более равномерную характеристику спектральной чувствительности.

Таким образом, в матрице с покадровым считыванием перенос зарядовых пакетов к выходному устройству осуществляется в три приема: 1) перенос из секции накопления в секцию памяти; 2) перенос из секции памяти в сдвиговый регистр; 3) перенос из сдвигового регистра в выходное устройство. Нетрудно видеть, что число переносов для разных элементов кадра будет различным. Максимальным оно будет для первого элемента верхней строки и минимальным - для последнего элемента нижней. Максимальное число переносов для одного зарядового пакета нетрудно подсчитать. Для покадровой организации считывания по трехтактной схеме сдвига число переносов N max = 2 х 3z + 2n , где z - число строк; п - число элементов в строке. В приведенном равенстве первый член учитывает число переносов по кадру, а второй - число переносов вдоль строки.

Учитывая, что зарядовые пакеты переносятся не полностью, так как, во-первых, часть заряда теряется в ловушках, существующих на границе кремния с окислом, а во-вторых, при определенной скорости переноса часть заряда может отстать от пакета и появиться в следующем. Неэффективность переноса заряда ε накладывает определенные ограничения на скорость работы ПЗС и полное число переносов, которые можно совершить без существенного разрушения сигнала. Если ε - относительная величина и характеризует часть заряда, отставшую от пакета на один перенос, умножив ε на число переносов в приборе N , получим результирующую неэффективность переноса N ε всего прибора.

Недостатком матриц ПЗС КП является неполное устранение смаза изображения, которое проявляется в виде вертикальных тянущихся продолжений за очень яркими деталями. Смаз появляется из-за того, что при переносе накопленных зарядов из фотоприемной секции в секцию памяти свет продолжает попадать в фотоприемную секцию.

Для уменьшения величины смаза изображения были разработаны матрицы со строчным переносом зарядов (см. рис. 8.13), в которых область накопления образована вертикальными столбцами светочувствительных элементов, между которыми помещены защищенные от света вертикальные сдвиговые регистры. В течение времени кадра в светочувствительных элементах накапливаются зарядовые пакеты. Во время гасящего кадрового импульса они одновременно переносятся в соседние ячейки вертикальных сдвиговых регистров. Во время накопления следующего кадра, зарядовые пакеты из вертикальных регистров одновременно сдвигаются в горизонтальный (выходной) регистр. Сдвиг по вертикальным регистрам на один элемент происходит во время обратного хода строчной развертки, а вывод зарядовых пакетов из горизонтальных регистров в выходное устройство - за время прямого хода строчной развертки. Полное освобождение вертикальных сдвиговых регистров от зарядов происходит за время кадра.


Рис. 8.13. Матрица со строчным переносом зарядов

Рис. 8.14. Матрица со строчно-кадровым переносом зарядов


Для обеспечения чересстрочной развертки в матрице ПЗС СП заряды из светочувствительных ячеек в вертикальные регистры переносятся: в нечетных полях - из нечетных ячеек, а в четных полях - из четных ячеек.

В трехматричных камерах вещательного назначения необходимо дальнейшее снижение уровня смаза изображения. Для обеспечения этого требования были разработаны гибридные матрицы ПЗС со строчно-кадровым переносом заряда (СКП). Матрицы ПЗС СКП (см. рис. 8.14 и 8.15) отличаются от матриц ПЗС СП (см. рис. 8.13) наличием в них дополнительной секции хранения зарядов на длительность поля.

Рис. 8.15. Концепция строчно-кадрового переноса

Поэтому частота переноса заряда из вертикальных ПЗС регистров в секцию хранения может быть выбрана в десятки раз больше частоты строк, используемой в матрицах ПЗС СП. Это позволяет во столько же раз уменьшить уровень смаза изображения. Недостатки матриц ПЗС СКП заключаются в относительной сложности изготовления и высокой стоимости производства.

Основные недостатки матричных ПЗС СП – невозможность освещения со стороны подложки и неполное использование светового потока из-за того, что фотодиоды занимают не всю площадь кристалла фотоны, попадающие на экранированные от света вертикальные ПЗС-регистры, не создают зарядов. Вследствие этого существенно снижается чувствительность камер.

Таким образом, уменьшение размеров светочувствительной площади в матрицах со строчным переносом косвенно ухудшает световую чувствительность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это очень сложно) – поверх каждого пикселя (фотодиода) помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксель (фотодиод), собирает в него весь световой поток, и этим самым эффективно увеличивает минимальную освещенность фотодиода (см. рис. 8.16).

Рис. 8.16,а. Сравнение традиционных схем с микролинзами

Рис. 8.16,б. Структура ПЗС-матрицы с микролинзами (фотография сделана электронным микроскопом)

Число фотодиодов в столбце матричного ПЗС выбирается равным числу строк в кадре. Чересстрочное разложение в матричных ПЗС со строчным переносом может быть реализовано различными способами. В простейшем случае в первом поле зарядовые пакеты из нечетных фотодиодов считываются в вертикальный ПЗС-регистр, а в четных фотодиодах накопление продолжается. Во втором поле считываются заряды, накопленные в четных фотодиодах. Размер светочувствительного элемента по вертикали оказывается равным размеру одного фотодиода. Центры соседних строк расположены на равном расстоянии друг от друга. Время накопления при таком считывании составляет в телевизионном режиме 40 мс – время кадра. Поэтому данный режим получил название режима накопления кадра. Столь большое время накопления приводит к искажениям при передаче подвижных объектов. Появляется зубчатость вертикальных границ при движении объектов по горизонтали. Для преодоления этого недостатка был разработан режим накопления поля.

Световая характеристика матрицы ПЗС в рабочем диапазоне освещенности линейна (см. рис. 8.17). Точка 1 соответствует выходному

сигналу в отсутствие освещения и определяет темновой ток, обусловленный в большой степени термогенерацией неосновных носителей. Точка 2 характеризует режим насыщения элемента матрицы, т.е. полное заполнение потенциальной ямы неосновными носителями. Глубина потенциальной ямы определяется конструктивными параметрами матрицы и потенциалом накопления, значение которого ограничено напряжением пробоя МОП-конденсатора.


Рис. 8.17. Световая характеристика матрицы ПЗС

Рис. 8.18. Спектральная характеристика матрицы ПЗС


Спектральная чувствительность матричного формирователя (рис. 8.18 и 8.19) имеет подъем в длинноволновой области спектра и спад в области длин волн 0,4...0,5 мкм (кривая 1), который обусловлен сильным поглощением на этом участке спектра нанесенными на полупроводниковую подложку поликремниевыми электродами.

Рис. 8.19. Спектральная чувствительность глаза и ПЗС-матрицы

Для повышения чувствительности в этой области спектра в поликремниевых электродах вскрыты окна. Площадь окон составляет примерно 15... 20 % от площади фоточувствительной поверхности элемента. Это подняло чувствительность матрицы на длине волны λ = 0,4 мкм до 20 % (кривая 2), что позволило использовать матрицу в цветном телевидении. Разрешающая способность определяется числом элементов накопления в матрице ПЗС. Для систем телевидения высокой четкости разработаны матрицы ПЗС с числом элементов 1035x1920.

Спектральная чувствительность ПЗС-матрицы зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет (рис. 8.19).

Однако такое проникновение является вредным. Такие волны настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении пропадают мелкие детали, потому что заряд ячеек растекается по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания». Может быть затронута также и масковая зона (рис. 8.15), предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут, в значительной степени возрасти шумы и вертикальный ореол. Поэтому в усовершенствованных ПЗС-видеокамерах применяются специальные оптические инфракрасные отсекающие фильтры. Они монтируются сверху ПЗС-матрицы и ведут себя как оптические НЧ фильтры с частотой среды порядка 700 нм, вблизи красного цвета (рис. 8.20) .

Рис. 8.20. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС-матрицы

Однако в тех случаях, когда предполагается использовать видеокамеру (черно-белую) в условиях низкой освещенности или в систему входят источники инфракрасного освещения объектов, такие фильтры не используются (чтобы не ослаблять чувствительность камер).

В цветных ПЗС-камерах, напротив, нужно использовать ИК-отсекающий фильтр. Типичная черно-белая ПЗС-матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала при освещенности мишени камеры в 0,01 лк. Та же камера с ИК-фильтром потребует освещенность в 10 раз большую. Но в этом случае верность цветопередачи является определяющим критерием.

ПЗС-ма́трица (сокр. от «п рибор с з арядовой с вязью») или CCD-ма́трица (сокр. от англ. CCD , «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема , состоящая из светочувствительных фотодиодов , выполненная на основе кремния , использующая технологию ПЗС - приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon , Canon , Sony , Fuji , Kodak , Matsushita , Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывает и выпускает ЗАО "НПП «ЭЛАР», С.-Петербург.

    1 История ПЗС-матрицы

    2 Общее устройство и принцип работы

    • 2.1 Пример субпикселя ПЗС-матрицы с карманом n-типа

    3 Классификация по способу буферизации

    • 3.1 Матрицы с полнокадровым переносом

      3.2 Матрицы с буферизацией кадра

      3.3 Матрицы с буферизацией столбцов

    4 Классификация по типу развёртки

    • 4.1 Матрицы для видеокамер

    5 Размеры фотографических матриц

    6 Некоторые специальные виды матриц

    • 6.1 Светочувствительные линейки

      6.2 Координатные и угловые датчики

      6.3 Матрицы с обратной засветкой

    7 Светочувствительность

    8 См. также

    9 Примечания

История ПЗС-матрицы

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs ). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кацуо Ивама (Kazuo Iwama ) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года . Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering ).

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике .

Общее устройство и принцип работы

ПЗС-матрица состоит из поликремния , отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов .

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС :

    1 - Фотоны света, прошедшие через объектив фотоаппарата;

    2 - Микролинза субпикселя;

    3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;

    4 - Прозрачный электрод из поликристаллического кремния или оксида олова ;

    5 - Изолятор (оксид кремния);

    6 - Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта);

    7 - Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей;

    8 - Кремниевая подложка p-типа;

Классификация по способу буферизации

[Матрицы с полнокадровым переносом

Матрицы с буферизацией кадра

Матрицы с буферизацией столбцов

Размеры фотографических матриц

Координатные и угловые датчики

Матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back - illuminated matrix ). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10-15 мкм . Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии .

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:

    интегральной светочувствительности , представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;

    монохроматической светочувствительности" - отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;

    набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность - зависимость светочувствительности от длины волны света;

Компания Sony - мировой лидер в разработке и производстве ПЗС- и КМОП-матриц широкого применения, как для любительских фотоаппаратов и камер, так и для рынка профессионального и специализированного оборудования.

Общие сведения

Общий вид ПЗС-матрицы

Фоточувствительная ПЗС (прибор с зарядовой связью) матрица (англ. CCD - charge-coupled device) - это прибор с переносом заряда, предназначенный для преобразования энергии оптического излучения в электрический сигнал, в котором зарядовые пакеты перемещаются к выходному устройству вследствие направленного перемещения потенциальных ям, и фоточувствительные элементы организованы в матрицу по строкам и столбцам. Преобразование осуществляется с помощью большого количества фотодиодов, расположенных в плоскости матрицы (так называемых пикселей). Отдельно взятый элемент чувствителен во всем видимом спектральном диапазоне, поэтому над фотодиодами цветных ПЗС-матриц используется светофильтр, который пропускает только один из трёх цветов: красного (Red) , зелёного (Green) , синего (Blue) или жёлтого (Yellow) , пурпурного (Magenta) , бирюзового (Cyan) . А в свою очередь в чёрно-белой ПЗС-матрице таких фильтров нет.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПИКСЕЛЯ

Общий вид пикселя в разрезе

Пиксель состоит из p-подложки, покрытой прозрачным диэлектриком, на который нанесён светопропускающий электрод, формирующий потенциальную яму.

Над пикселем может присутствовать светофильтр (используется в цветных матрицах) и собирающая линза (используется в матрицах, где чувствительные элементы не полностью занимают поверхность).

На светопропускающий электрод, расположенный на поверхности кристалла, подан положительный потенциал. Свет, падающий на пиксель, проникает вглубь полупроводниковой структуры, образуя электрон-дырочную пару. Образовавшиеся электрон и дырка растаскиваются электрическим полем: электрон перемещаются в зону хранения носителей (потенциальную яму), а дырки перетекают в подложку.

Для пикселя присущи следующие характеристики:

  • Ёмкость потенциальной ямы - это количество электронов, которое способна вместить потенциальная яма.
  • Спектральная чувствительность пикселя - зависимость чувствительности (отношение величины фототока к величине светового потока) от длины волны излучения.
  • Квантовая эффективность (измеряется в процентах) - физическая величина, равная отношению числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощённых фотонов. У современных ПЗС матриц этот показатель достигает 95%. Для сравнения, человеческий глаз имеет квантовую эффективность порядка 1%.
  • Динамический диапазон - отношение напряжения или тока насыщения к среднему квадратичному напряжению или току темнового шума. Измеряется в дБ.

УСТРОЙСТВО ПЗС-МАТРИЦЫ И ПЕРЕНОСА ЗАРЯДА

Общий вид трёхфазного регистра сдвига

ПЗС-матрица разделена на строки, а в свою очередь каждая строка разбита на пиксели. Строки разделены между собой стоп слоями (p +), которые не допускают перетекания зарядов между ними. Для перемещения пакета данных используются параллельный, он же вертикальный (англ. VCCD) и последовательный, он же горизонтальный (англ. HCCD) регистры сдвига.

Простейший цикл работы трехфазного регистра сдвига начинается с того, что на первый затвор подается положительный потенциал, в результате чего образуется яма, заполненная образовавшимися электронами. Затем на второй затвор подадим потенциал, выше, чем на первом, вследствие чего под вторым затвором образуется более глубокая потенциальная яма, в которую перетекут электроны из под первого затвора. Чтобы продолжить передвижение заряда следует уменьшить значение потенциала на втором затворе, и подать больший потенциал на третий. Электроны перетекают под третий затвор. Данный цикл продолжается от места накопления до непосредственно считывающего горизонтального резистора. Все электроды горизонтального и вертикального регистров сдвига образуют фазы (фаза 1, фаза 2 и фаза 3).

Классификация ПЗС-матриц по цветности:

  • Чёрно-белые
  • Цветные

Классификация ПЗС-матриц по архитектуре:

Зелёным цветом обозначены фоточувствительные ячейки, серым - непрозрачные области.

Для ПЗС-матрицы присущи следующие характеристики:

  • Эффективность передачи заряда - отношение количества электронов в заряде в конце пути по регистру сдвига к количеству в начале.
  • Коэффициент заполнения - отношение площади заполненной светочувствительными элементами к полной площади светочувствительной поверхности ПЗС-матрицы.
  • Темновой ток - электрический ток, который протекает по фоточувствительному элементу, в отсутствие падающих фотонов.
  • Шум считывания - шум, возникающий в схемах преобразования и усиления выходного сигнала.

Матрицы с полнокадровым переносом (англ. full-frame).

Преимущества:

  • Простота технологического цикла;
  • Возможность занять 100% поверхности светочувствительными элементами.

Недостатки:

  • Частота считывания ограничена скоростями работы последовательного и параллельного регистров сдвига. От этого же зависит интервал перекрытия матрицы затвором.

Матрицы с кадровым переносом. (англ. frame transfer).

Преимущества:

  • Возможность занять 100% поверхности светочувствительными элементами;
  • Время считывания ниже, чем у матрицы с полнокадровым переносом;
  • Смазывание меньше, чем в ПЗС-матрице с полнокадровым переносом;
  • Имеет преимущество рабочего цикла по сравнению полнокадровой архитектурой: ПЗС-матрица с кадровым переносом всё время собирает фотоны.

Недостатки:

  • При считывании данных следует перекрывать затвором источник света, чтобы избежать появления эффекта смазывания;
  • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда;
  • Изготовление и производство данных матриц дороже, чем устройств с полнокадровым переносом.

Матрицы с межстрочным переносом или матрицы с буферизацией столбцов (англ. Interline-transfer).

Преимущества:

  • Нет необходимости применять затвор;
  • Отсутствует смазывание.

Недостатки:

  • Возможность заполнить поверхность чувствительными элементами не более чем на 50%.
  • Скорость считывания ограничена скоростью работы регистра сдвига;
  • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом.

Матрицы со строчно-кадровым переносом или матрицы с буферизацией столбцов (англ. interline).

Преимущества:

  • Процессы накопления и переноса заряда пространственно разделены;
  • Заряд из элементов накопления передаётся в закрытые от света ПЗС-матрицы регистры переноса;
  • Перенос заряда всего изображения осуществляется за 1 такт;
  • Отсутствует смазывание;
  • Интервал между экспонированиями минимален и подходит для записи видео.

Недостатки:

  • Возможность заполнить поверхность чувствительными элементами не более чем на 50%;
  • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом;
  • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда.

ПРИМЕНЕНИЕ ПЗС-МАТРИЦ

НАУЧНОЕ ПРИМЕНЕНИЕ

  • для спектроскопии;
  • для микроскопии;
  • для кристаллографии;
  • для рентгеноскопии;
  • для естественных наук;
  • для биологических наук.

КОСМИЧЕСКОЕ ПРИМЕНЕНИЕ

  • в телескопах;
  • в звёздных датчиках;
  • в спутниках слежения;
  • при зондировании планет;
  • бортовое и ручное оборудование экипажа.

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ

  • для проверки качества сварных швов;
  • для контроля равномерности окрашенных поверхностей;
  • для исследования износостойкости механических изделий;
  • для считывания штрих-кодов;
  • для контроля качества упаковки продукции.

ПРИМЕНЕНИЕ ДЛЯ ОХРАНЫ ОБЪЕКТОВ

  • в жилых квартирах;
  • в аэропортах;
  • на строительных площадках;
  • на рабочих местах;
  • в «умных» камерах, распознающих лицо человека.

ПРИМЕНЕНИЕ В ФОТОГРАФИРОВАНИИ

  • в профессиональных фотоаппаратах;
  • в любительских фотоаппаратах;
  • в мобильных телефонах.

МЕДИЦИНСКОЕ ПРИМЕНЕНИЕ

  • в рентгеноскопии;
  • в кардиологии;
  • в маммографии;
  • в стоматологии;
  • в микрохирургии;
  • в онкологии.

АВТО-ДОРОЖНОЕ ПРИМЕНЕНИЕ

  • для автоматического распознавания номерных знаков;
  • для контроля скорости;
  • для управления транспортным потоком;
  • для пропуска на стоянку;
  • в полицейских системах наблюдения.

Матрица ПЗС (Прибор с Зарядовой Связью) или по-английски CCD (Charge-Coupled Device) представляет собой матрицу светочувствительных элементов, способных накапливать электрический заряд под действием света и передавать этот заряд от одного элемента к другому. Матрицы ПЗС используются в подавляющем большинстве цифровых фотоаппаратов и видеокамер.

Принцип действия светочувствительных элементов матрицы состоит в следующем. Основой матрицы служит подложка из кремния p-типа. Кремний p-типа получают добавлением к кремнию примесей, например атомов бора. В результате добавления примеси в кристалле кремния создаются свободные, положительно заряженные носители – дырки. Дырки являются основными носителями заряда, поскольку свободных электронов в таком кристалле практически нет. Реакция на свет является следствием явления внутреннего фотоэффекта, когда фотон, попадая в кристалл кремния, генерирует пару носителей зарядов – электрон и дырку. На поверхность подложки нанесен слой диэлектрика – двуокиси кремния, полученной на поверхности подложки термическим окислением. Двуокись кремния является прозрачной и не препятствует проникновению света. Поверх диэлектрика нанесены электроды из поликристаллического кремния, осажденного из газовой фазы. При подаче на электрод положительного потенциала, дырки вытесняются из области кремния, находящейся вблизи этого электрода и вокруг него начинают скапливаться электроны, возникающие в результате внутреннего фотоэффекта. Причем этих электронов тем больше, чем больше света попало на близлежащий участок подложки. Если на этом электроде убрать положительный потенциал, а создать его на соседнем электроде, накопленный заряд переместится на соседний электрод. Изменяя потенциалы на электродах можно передвигать накопленный заряд от одного электрода к другому, практически не меняя его величины.

Каждый светочувствительный элемент имеет три электрода, что позволяет управлять направлением перемещения зарядов. Если на первых электродах всех элементов имеется положительный потенциал, то электроны будут скапливаться именно под этими, первыми электродами. Если уменьшить положительный потенциал на первых электродах и увеличить на вторых, то накопленный заряд переместится к ним. Если теперь уменьшить потенциал на вторых электродах и увеличить его на третьих, заряд переместится под третьи электроды. Если уменьшить заряд под третьими электродами, и увеличить на первых, заряд переместится между элементами, поскольку первый электрод соседнего элемента окажется к нему ближе. Таким образом, матрица светочувствительных элементов может последовательно перемещать заряды от одного элемента к другому через всю матрицу.

По принципу перемещения и считывания заряда различают три типа ПЗС матриц. Это матрицы с полнокадровым переносом (Full-Frame Transfer CCD, FF CCD), с кадровым переносом (Frame Transfer CCD, FT CCD) и с чересстрочным переносом (Interline CCD, IL CCD).

Матрицы с полнокадровым переносом используют для переноса заряда саму матрицу светочувствительных элементов, поочередно передавая каждую строку матрицы в сдвиговый регистр, откуда данные поэлементно передаются на вход усилителя, и далее, в аналого-цифровой преобразователь. Чтобы исключить изменение зарядов под действием света во время их переноса, для таких матриц необходим механический затвор.

Матрицы с кадровым переносом имеют промежуточную, защищенную от света область хранения. После экспонирования кадр перемещается в защищенную область, откуда построчно поступает в сдвиговый регистр, и далее в усилитель и аналого-цифровой преобразователь. Такие матрицы не требуют механического затвора, однако такая конструкция существенно увеличивает стоимость матрицы.

Если в матрицах с кадровым переносом весь кадр целиком переносится в единую буферную область, то в матрицах с чересстрочным переносом для каждого столбца светочувствительных элементов имеется свой буферный регистр, защищенный от воздействия света. Заряды из каждого столбца переносятся в буфер, и затем поэлементно передаются из буферных регистров в сдвиговый регистр. Такая схема не требует механического затвора и позволяет реализовать очень короткие выдержки. Однако основной недостаток этой схемы состоит в том, что существенная часть площади поверхности матрицы занята буферными регистрами, что сильно снижает ее светочувствительность. Для преодоления этого недостатка поверхность матрицы покрывают микролинзами, концентрирующими световой поток, падающий на всю поверхность элемента матрицы на относительно небольшой площади его поверхности, чувствительной к свету.

Основными характеристиками ПЗС матриц, помимо ее разрешения, являются ее физические размеры, светочувствительность, уровень шума, динамический диапазон.

Определяющей характеристикой при этом являются физические размеры матрицы, а светочувствительность, уровень шума и динамический диапазон во многом зависят от ее физических размеров.

Если разделить ширину и высоту матрицы в миллиметрах на количество пикселей в матрице по горизонтали и вертикали, получатся линейные размеры пикселя. Для современных матриц линейные размеры пикселей составляют около 3-10 мкм по вертикали и горизонтали. Именно размер пикселей влияет в наибольшей степени на светочувствительность, уровень шума и динамический диапазон матрицы. При этом следует учитывать, что светочувствительный элемент может занимать не всю площадь поверхности пикселя, часть поверхности занимают дополнительные элементы, хотя в некоторой степени это обстоятельство исправляется при помощи применения микролинз.

Динамический диапазон матрицы определяется как соотношение величины максимального заряда, который может быть накоплен в светочувствительном элементе, к минимально различимому заряду, который в свою очередь определяется уровнем шума. Понятно, что максимальный заряд пропорционален площади светочувствительного элемента – чем больше размер положительно заряженного электрода, тем больше электронов может быть накоплено вблизи него.

Чувствительность матрицы определяется как соотношение уровня полезного сигнала – заряда получаемого под воздействием света, к уровню шума. Заряд получаемый под воздействием света тем больше, чем большее количество фотонов попадет на светочувствительный элемент, и следовательно, чем больше его площадь.

Уровень шума матрицы складывается из нескольких составляющих, таких как тепловой шум, шум переноса, шум считывания и других. Тепловой шум возникает вследствие того, что свободные электроны могут образовываться в полупроводнике не только под воздействием света, но и в результате тепловых колебаний. Это явление называется термоэлектронная эмиссия, и хотя и представляет собой случайный процесс, происходит более-менее равномерно по всему объему полупроводника. В результате, в каждый пиксель попадает некоторое количество тепловых электронов. Понятно, что их количество также зависит от площади пикселя – чем больше площадь, тем больше тепловых электронов в нем образуется. В разных пикселях может образовываться разное количество тепловых электронов, однако в основном оно будет составлять значение, близкое к некоторой средней величине. При этом степень искажения изображения будет зависеть не столько от этой средней величины, сколько от разницы в количестве тепловых электронов в разных пикселях. Кроме того, среднее количество тепловых электронов вполне можно определить использовав крайние, не участвующие в формировании изображения и не засвеченные пиксели, после чего скорректировать величины зарядов всех пикселей на эту величину. Разницу в количестве тепловых электронов определить не получится, но эта разница практически не зависит от площади пикселя. Величина шума переноса и шума считывания также не зависит от площади пикселя, следовательно, при увеличении площади пикселя соотношение величины полезного сигнала к суммарной величине шумов будет увеличиваться.

Можно посмотреть на проблему и немного с другой стороны. Если представить себе ПЗС матрицу, в которой структура полупроводника абсолютно идеальна, легирующие примеси распределены абсолютно равномерно, форма и размер элементов соблюдены достаточно строго, то станет понятно, что в такой матрице тепловые электроны будут возникать практически одинаково во всех пикселях, все пиксели будут одинаково реагировать на свет, и в результате мы получим изображение, максимально соответствующее оригиналу. Однако на практике идеальных матриц не бывает, любая матрица будет иметь те или иные дефекты структуры. Соответственно и количество тепловых электронов будет не одинаково в разных пикселях, и их реакция на одно и то же количество света будет отличаться. В результате уровень шума возрастет, и возрастет тем сильнее, чем большие дефекты будут встречаться в матрице. При производстве матриц, количество и величину дефектов стараются свести к минимуму, однако чем мельче дефекты, тем труднее их предотвратить. При увеличении размеров матрицы, и размеров каждого пикселя, влияние этих дефектов снижается, а соответственно, снижается и уровень шума.

Разница в чувствительности к свету отдельных пикселей обычно малозаметна, однако в большинстве матриц встречаются пиксели, имеющие нетипично большую чувствительность. На практике это проявляется при съемке с большими выдержками в виде ярких цветных точек на темном фоне. Обычно такие пиксели называют «горячими».

Количество таких пикселей на разных типах и разных экземплярах матриц отличается, и как правило, не превышает десятка пикселей на всю матрицу. Для борьбы с этим явлением существуют специальные средства, встроенные во внутреннее программное обеспечение фотоаппарата. Если эти средства не помогают, бороться с ним можно и при помощи графических редакторов вручную, или используя специальные программы.

Реальная чувствительность ПЗС матриц, определяемая как соотношение полезного сигнала и шума, как правило, недоступна человеку, использующему фотоаппарат. Да и информативность этой электронной характеристики для фотографа была бы крайне низкой. Поэтому производители цифровых фотоаппаратов не указывают ее среди технических характеристик, а вместо этого указывают чувствительность фотоаппарата в единицах ISO, аналогичных единицам измерения чувствительности фотопленки. Однако чувствительность фотоаппарата мало связана с реальной чувствительностью матрицы.

Большинство фотоаппаратов может иметь несколько режимов с разной чувствительностью. В большинстве случаев, изменение чувствительности фотоаппарата осуществляется при помощи изменения аналогового усиления получаемого с матрицы сигнала. Понятно, что при увеличении усиления, вместе с полезным сигналом усиливаются и шумы.

Поскольку светочувствительные элементы ПЗС матриц реагируют на количество света, но не могут различать его спектральный состав, матрицы ПЗС по своей природе являются черно-белыми. И хотя разница в реакции на свет различной частоты в ПЗС матрицах все-таки существует, использовать это в обычных матрицах невозможно. Поэтому, для получения цветного изображения в цифровых фотоаппаратах применяют различные способы.

В высококачественных видеокамерах, также оснащенных ПЗС матрицами, применяют один из самых эффективных способов получения цветного изображения. При помощи специальной призмы световой пучок из объектива разделяют на три части, и направляют на три отдельные ПЗС матрицы, перед каждой из которых размещен светофильтр соответствующего цвета. Матрицы видеокамер имеют невысокое разрешение, определяемое параметрами стандартного видеосигнала, и соответственно не очень высокую стоимость. В результате такое техническое решение приводит к относительно небольшому увеличению стоимости камеры при резком улучшении качества изображения. В цифровых фотоаппаратах, где стоимость светочувствительной матрицы составляет весьма существенную часть стоимости аппарата, такое решение привело бы к недопустимому увеличению стоимости. Поэтому такой способ получения цветного изображения не применяют.

В некоторых профессиональных студийных аппаратах используют последовательную съемку трех отдельных кадров через соответствующие цветные светофильтры, однако такой способ годится только для съемки в студийных условиях неподвижных объектов.

Наибольшее распространение в цифровых фотоаппаратах получил способ на основе использования цветных микрофильтров, нанесенных на каждый пиксель. Смысл этого способа сводится к тому, что каждый пиксель реагирует только на свет определенного цвета, а цвета пикселей при этом чередуются. После считывания и оцифровки данных с ПЗС матрицы их программным способом обрабатывают, рассчитывая значение всех трех цветов для каждого пикселя. Понятно, что такая обработка есть не что иное, как интерполяция, и приводит к ухудшению разрешающей способности матрицы. Однако это ухудшение происходит в основном в цветовых каналах изображения, в канале яркости разрешение практически не ухудшается. Кроме того, человеческий глаз слабее воспринимает цвет мелких деталей, поэтому ухудшение разрешения в цветовых каналах практически незаметно.

Еще одна проблема может возникать в ПЗС матрицах при съемке ярко освещенных объектов. Если на светочувствительный элемент попадает слишком большое количество света, число электронов, сгенерированных в результате внутреннего фотоэффекта начинает превышать то количество электронов, которое может удерживаться вблизи положительно заряженного электрода. В результате, электроны начинают перемещаться внутри кристалла, скапливаясь под ближайшими положительно заряженными электродами, емкость которых еще не исчерпана. Это явление получило название блюминга и на практике приводит к размыванию изображения. Конечно, проще всего было бы просто уменьшить количество света, попадающего на матрицу, изменив экспозицию. Однако во многих случаях это приведет к тому, что детали в темных участках кадра станут неразличимыми. Поэтому для борьбы с этим явлением применяют так называемый электронный дренаж. Для этого, вблизи светочувствительных элементов размещают каналы, по которым лишние электроны удаляются из матрицы. По схеме реализации различают вертикальный дренаж, когда электроны удаляются при помощи подачи положительного потенциала на подложку матрицы, и боковой дренаж, когда между рядами пикселей размещают положительно заряженные проводники. В первом случае это приводит к некоторому снижению максимальной емкости пикселя, а во втором – к уменьшению полезной площади поверхности матрицы.

Статьи по теме: